Juan Pablo

Profile: Juan Pablo Mejía Ramos

Associate Professor
Faculty

Juan Pablo Mejía Ramos is Associate Professor of Mathematics and Mathematics Education, jointly appointed in the Department of Mathematics (within the School of Arts and Sciences) and the Department of Learning and Teaching (within the Graduate School of Education). He is mainly interested in mathematical argumentation and proof, particularly the ways in which university students and research-active mathematicians construct, read and present arguments and proofs in mathematics.

Recent grants

J.P. Mejía-Ramos (PI), K. Weber, D. Gitomer, K. Lew, & K. Melhuish. 2018-2021. Developing and Validating Proof Comprehension Tests in Real Analysis. NSF Grant DUE-1821553. Award: $600,000.

K. Weber (PI), N. Wasserman, J.P. Mejía-Ramos, T. Fukawa-Connelly, & A. Cohen. 2015-2018. ULTRA: Upgrading Learning for Teachers in Real Analysis. NSF Grant DUE-1524681. Award: $519,900.

J.P. Mejía-Ramos (PI), K. Weber, and J. de la Torre. 2013-2015. Validating proof comprehension tests in mathematics. NSF TUES Grant DUE-1245625Award: $200,000

J.P. Mejía-Ramos (PI), K. Weber, E. Fuller, and J. de la Torre. 2010-2013. Proving styles in university mathematics. NSF REESE Grant DRL-1008641. Award: $441,900.

Education

PhD (Mathematics Education), University of Warwick, 2008.
MS (Mathematics Education), University of Warwick, 2004.
BS (Mathematics), Universidad de Los Andes, 2003.

Research Work With Students

Some of my most recent research projects focus on the reasoning styles of mathematics undergraduate students as they construct mathematical proofs, the reading of published proofs by research-active mathematicians, the assessment of proof comprehension at the university level, and the different ways in which mathematicians present proofs in their advanced mathematics courses.

This NSF website contains more information on my project on proving styles in undergraduate mathematics, this one and this one provide information on two projects to design and validate proof comprehension tests in undergraduate mathematics, and this one describes an ongoing project to design, implement, and assess an innovative real analysis course for pre-service and in-service mathematics teachers. For more information on this last project, please visit the website for the ULTRA project. For information on other projects (and to download related papers), please visit the website of our research group: Proof Comprehension Research Group.

Recent & Selected Publications

Many of my publications can be downloaded at the Proof Comprehension Research Group website: pcrg.gse.rutgers.edu

Book Chapters

Mejía-Ramos, J. P., Alcock, L., Lew, K., Rago, P., Sangwin, C., & Inglis, M. (accepted). Using corpus linguistics to investigate mathematical explanation. To appear in F. Eugen & C. Mark (Eds.) Methodological Advances in Experimental Philosophy. London: Bloomsbury.

Weber, K., & Mejía-Ramos, J. P. (accepted). An empirical study on the admissibility of graphical inferences in mathematical proofs. To appear in A. Aberdein & M. Inglis (Eds.) Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury.

Inglis, M., & Mejía-Ramos, J. P. (2013). How persuaded are you? A typology of responses. In A. Aberdein & I. Dove (Eds.) The Argument of Mathematics (pp. 101-118). Springer: Dordrecht.This chapter is a reprint of the journal article published in Research in Mathematics Education 10(2), 119-133.

Tall, D. O., & Mejía-Ramos, J. P. (2010). The long-term cognitive development of reasoning and proof, in G. Hanna, H.N. Jahnke, and H. Pulte (Eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives (pp. 137-149). New York: Springer.

Mejía-Ramos, J. P. (2006). An analysis of three modes of proof, in A. Simpson (Ed.), Retirement as Process and Concept: A Festschrift for Eddie Gray and David Tall, Prague, Czec Republic, 15-16 July 2006 (pp. 173-180). Prague: Karlova Univerzita v Praze, Pedagogick Fakulta.

Refereed Journal Papers

Mejía-Ramos, J. P., & Weber, K. (accepted). Mathematics majors' diagram usage when writing proofs in calculus. Accepted for publication in Journal for Research in Mathematics Education.

Lew, K., & Mejía-Ramos, J.P. (accepted). Linguistic conventions of mathematical proof writing at the undergraduate level: Mathematicians' and students' perspectives. Accepted for publication in Journal for Research in Mathematics Education.

Weber, K. Lew, K., & Mejía-Ramos, J.P. (accepted). Using expectancy value theory to account for students' mathematical justications. Accepted for publication in Cognition and Instruction.

Wasserman, N., Weber, K., Villanueva, M., & Mejía-Ramos, J. P. (2018). Mathematics teachers’ views about the limited utility of real analysis: A transport model hypothesis. Journal of Mathematical Behavior, 50, 74-89.

Fukawa-Connelly, T., Weber, K., & Mejía-Ramos, J. P. (2017). Informal content and student note-taking in advanced mathematics classes. Journal for Research in Mathematics Education, 48(5), 567-579.

Wasserman, N., Fukawa-Connelly, T., Villanueva, M., Mejía-Ramos, J.P., & Weber, K. (2017). Making real analysis relevant to secondary teachers: Building up from and stepping down to practice. PRIMUS, 27(6), 559-578.

Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof comprehension tests in undergraduate mathematics. Research in Mathematics Education, 19(2), 130-146.

Weber, K., Fukawa-Connelly, T., Mejía-Ramos, J. P., & Lew, K. (2016). How to help students understand lectures in advanced mathematics. Notices of the AMS, 63(10), 1190-1193.

Lew, K., Fukawa-Connelly, T., Mejía-Ramos, J.P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the professor is trying to convey. Journal for Research in Mathematics Education, 47, 162-198.

Zazkis, D., Weber, K., & Mejía-Ramos, J.P. (2016). Bridging the gap between informal argument and mathematical proof. Educational Studies in Mathematics, 93(2), 155-173.

Zhen, B. Mejía-Ramos, J.P. & Weber, K. (2016). Mathematics majors’ perceptions on the permissibility of graphs in proofs. International Journal for Research in Undergraduate Mathematics Education, 2, 1-29.

Mejía-Ramos, J. P., Weber, K., & Fuller, E. (2015). Factors influencing students' propensity for semantic and syntactic reasoning in proof writing: A single-case study. International Journal of Research in Undergraduate Mathematics Education, 1(2), 187-208.

Weber, K. & Mejía-Ramos, J. P. (2015). The contextual nature of conviction in mathematics. For the Learning of Mathematics, 35(2), 9-14.

Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2015). Two proving strategies of highly successful mathematics majors. Journal of Mathematical Behavior, 39, 11-27.

Fuller, E., Weber, K., Mejía-Ramos, J. P., Samkoff, A., & Rhoads, K. (2014). Comprehending structured proofs. International Journal for Studies in Mathematics Education 7(1), 1-32.

Weber, K., Inglis, M., & Mejía-Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49(1), 36-58.

Mejía-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: further evidence from a survey study. Educational Studies in Mathematics, 85(2), 161-173.

Weber, K., & Mejía-Ramos, J. P. (2014). Mathematics majors' beliefs about proof reading. International Journal of Mathematical Education in Science and Technology, 45(1), 89-103.

Weber, K., & Mejía-Ramos, J. P. (2013). The influence of sources in the reading of mathematical text: A reply to Shanahan, Shanahan, and Misischia. Journal of Literacy Research, 45, 87-96.

Weber, K., & Mejía-Ramos, J. P. (2013). On mathematicians' proof skimming: A reply to Inglis and Alcock. Journal for Research in Mathematics Education, 44(2), 464-471.

Inglis, M., Mejía-Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards when evaluating elementary proofs. Topics in Cognitive Science, 5(2), 270-282.

Lai, Y., Weber, K., & Mejía-Ramos, J. P. (2012). Mathematicians’ perspectives on features of a good pedagogical proof. Cognition and Instruction, 30(2), 146-169.

Mejía-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3-18.

Iannone, P., Inglis, M., Mejía-Ramos, J. P., Simpson, A. & Weber, K. (2011). Does generating examples aid proof production? Educational Studies in Mathematics, 77, 1-14.

Mejía-Ramos, J. P. & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a non-proof prove? Journal of Mathematical Behavior, 30, 19-29.

Weber, K. & Mejía-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344.

Weber, K. & Mejía-Ramos, J. P. (2009). An alternative framework to evaluate proof productions. Journal of Mathematical Behavior, 28, 212-216.

Inglis, M., & Mejía-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27, 25-50.

Inglis, M., & Mejía-Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science, 14, 97-110.

Mejía-Ramos, J. P., & Inglis, M. (2009). What are the argumentative activities associated with proof? Research in Mathematics Education, 11, 77-78.

Inglis, M., & Mejía-Ramos, J. P. (2008). How persuaded are you? A typology of responses. Research in Mathematics Education, 10(2), 119-133.

Inglis, M., & Mejía-Ramos, J. P. (2008). Theoretical and methodological implications of a broader perspective on mathematical argumentation. Mediterranean Journal for Research in Mathematics Education, 7(2), 107-119.

Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21.

Inglis, M., & Mejía-Ramos, J. P. (2005). La fuerza de la aserción y el poder persuasivo en la argumentación en matemáticas. Revista EMA: Investigación e Innovación en Educación Matemática, 10, 327-352.

 

  • Phone: 
    (848) 932-0806
    (848) 445-7496
  • Office Address: 
    Graduate School of Education
    10 Seminary Place
    Room 234
    New Brunswick, NJ 08901
     
    Hill Center
    110 Frelinghuysen Road
    Room 518
    Piscataway, NJ 08854